Faculty of Civil and Environmental Engineering

STUDY MODULE D	ESCRIPTION FORM		
		Code 1010102111010103701	
Field of study Structural Engineering Second-cycle Studies	Profile of study (general academic, practical) (brak)	Year /Semester	
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) obligatory	
Cycle of study:	Form of study (full-time,part-time)	•	
Second-cycle studies	nd-cycle studies full-time		
No. of hours	1	No. of credits	
Lecture: 30 Classes: 15 Laboratory: -	Project/seminars:	15 3	
Status of the course in the study program (Basic, major, other) (university-wide, from another field)			
(brak)	(brak)		
Education areas and fields of science and art		ECTS distribution (number and %)	

Responsible for subject / lecturer:

dr hab. inż. Przemysław Litewka, prof. nadzw. email: przemyslaw.litewka@gmail.com tel. 61-6652468

Budiwnictwa i Inżynierii Środowiska ul. Piotrowo 5, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	-Knows analytical methods of computation of internal forces and displacements in statically determinate and indeterminate bar structures.	
		-Has basic knowledge concerning buckling of compression members and stability loss of plane bar structures.	
		-Has knowledge concerning the stress and strain states in members cross sections.	
2	Skills	-Can calculate forces and displacements in statically determinate and indeterminate bar structures.	
		-Can calculate stresses and strains in members cross sections.	
3	Social competencies	-Can describe the calculations carried out	

Assumptions and objectives of the course:

- 1. Enhancement of knowledge concerning classical methods of analysis of bar structures.
- 2. Getting acquainted with matrix methods of analysis of statics and stability of bar structures.
- 3. Getting acquainted with some methods of analysis of space girders

Generic graduate attributes

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Knows analytical and numerical methods of calculation of internal forces and displacements in bar structures, also with the influence of large axial forces [K_W03]
- 2. Knows methods of analysis of initial stability of bar structures [K_W03]
- 3. Knows foundations concerning forming and non-linear behaviour of cable structures [K_W03, K_W09]
- 4. Knows foundations of the finite strip method [K_W03]

Skills:

- 1. Can calculate by various methods internal forces and displacements in bar structures also within the second order theory $-[K_U04, K_U06, K_U13]$
- 2. Can calculate the critical load and the mode of stability loss for plane bar structures [K_U04, K_U06]
- 3. Can apply the Newton-Raphson method in the analysis of geometrically non-linear cable structures [K_U04, K_U06]
- 4. Can crtitcally assess the results of static and stability analysis of bar structures [K_U07]

Social competencies:

Faculty of Civil and Environmental Engineering

- 1. Is responsible for the correctness of the analysis carried out [K_K02]
- 2. Can describe in writing the calculations and draw the appropriate conclusions [K_K10]

Assessment methods of study outcomes

Lectures and example classes ? two identical marks are attributed basing on the results of two written tests checking the knowledge and problem solving skills

Test No.1? Points 1? 4 from the Content section? 50%

Test No. 2? Points 5? 8 from the Content section? 50%

Exercise classes ? one mark is attributed basing on three individual exercises with a written assessment of related knowledge and skills

Ex. No.1 ? Statically indeterminate curved beams ? flexibility method with numerical integration ? 33%

Ex. No. 2 ? Static analysis of plane frames ? matrix version of stiffness method ? 33%

Ex. No. 3 ? Initial stability and static analysis with large axial forces for plane frames ? matrix method ? 33%

Course description

- 1. Calculation of internal forces and displacements in curved beams. Analytical integration for circular beams and numerical integration for other geometry.
- 2. Calculation of internal forces and displacements in space frames.
- 3. Enhancement of the range of analytical methods for bar structures? Hardy-Cross method, mixed method. Influence of elastic supports, temperature change and imposed support displacements.
- 4. Matrix version of the stiffness method in plane and space frames and trusses.
- 5. Matrix analysis of statics for plane frames with the influence of large axial forces ? the second order theory.
- 6. Initial stability of plane frames? the matrix approach.
- 7. Calculation of internal forces and displacements in geometrically non-linear cable structures.
- 8. Foundations of the finite strip method in the analysis of space girders

Basic bibliography:

- 1. Electronic textbook ? see the links Materials at: http://www.ikb.poznan.pl/przemyslaw.litewka/strana. html
- 2. Selected problems of advanced structural mechanics (in Polish: Wybrane zagadnienia zaawansowanej mechaniki budowli), P. Litewka, R. Sygulski, Wydawnictwo Politechniki Poznańskiej, Poznań, 2012

Additional bibliography:

- 1. Computer Analysis of Structural Systems, J. F. Fleming, Mc Graw Hill, 1989
- 2. Structural Analysis, R. C. Coates, M. G. Coutie, F. K. Kong, Van Nostrand Reinhold, 1988
- 3. Structural mechanics? computer approach (in Polish: Mechanika budowli ujęcie komputerowe), vol. 1, 2 i 3, Z. Waszczyszyn et al., Arkady, Warszawa, 1995
- 4. Cheung YK. Finite Strip Method in Structural Analysis. Pergamon Press (1976)

Result of average student's workload

Activity	Time (working hours)
1. Exercise No.1	5
2. Exercise No. 2	5
3. Exercise No. 3	10
4. Preparation to Test No.1	12
5. Preparation to Test No.2	8

Student's workload

Source of workload	hours	ECTS
Total workload	75	3
Contact hours	60	2
Practical activities	45	2